




𝑥2 = −1 No solution in IR

Suppose that there is a number 𝑖 such that:

 𝑖2 = −1 

𝑖 is called imaginary number



✓ A complex number z is in the form of 𝑧 = 𝑎 + 𝑏𝑖 𝑎, 𝑏 ∈ 𝐼𝑅
✓ 𝒂 is called the real part: 𝑅𝑒(𝑧) = 𝑎
     and 𝒃 is called the imaginary part: 𝐼𝑚(𝑧) = 𝑏
✓ The set of all the complex numbers is denoted ℂ.

✓ Any real number is a complex number where 0 is its imaginary part.

Example:

𝑧 = −1 − 3𝑖 where 𝑅𝑒(𝑧) = −1 and 𝐼𝑚(𝑧) = −3

𝑧 = 2 +
1

2
𝑖 where 𝑅𝑒 𝑧 = 2 and 𝐼𝑚 𝑧 =

1

2
 



❶ 𝑧 + 𝑧′ = 𝑎 + 𝑏𝑖 + 𝑎′ + 𝑏′𝑖 = 𝑎 + 𝑎′ + 𝑏 + 𝑏′ 𝑖 
Example:

𝑧 = 1 + 2𝑖 ;  𝑧′ = 3 + 3𝑖 
𝑧 + 𝑧′ = 1 + 4 + 3 + 3 𝑖 = 4 + 5𝑖 

❷ 𝑧 − 𝑧′ = 𝑎 + 𝑏𝑖 − (𝑎′ + 𝑏′𝑖) = 𝑎 − 𝑎′ + 𝑏 − 𝑏′ 𝑖 
Example:

𝑧 = 1 + 2𝑖 ;  𝑧′ = 3 + 3𝑖 
𝑧 − 𝑧′ = 1 − 3 + 2 − 3 𝑖 = −2 + −1 𝑖 = −2 − 𝑖  

Let 𝑧 = 𝑎 + 𝑏𝑖 and 𝑧′ = 𝑎′ + 𝑏′𝑖 be two complex numbers



❸ 𝑧 × 𝑧′ = 𝑎 + 𝑏𝑖 × 𝑎′ + 𝑏′𝑖 = 𝑎𝑎′ − 𝑏𝑏′ + 𝑖(𝑎𝑏′ + 𝑏𝑎′)
Proof:

𝑧 × 𝑧′ = 𝑎 + 𝑏𝑖 × 𝑎′ + 𝑏′𝑖  

= 𝑎𝑎′ + 𝑎𝑏′𝑖 + 𝑏𝑖𝑎′ + 𝑏𝑖𝑏′𝑖 
= 𝑎𝑎′ + 𝑎𝑏′𝑖 + 𝑏𝑎′𝑖 + 𝑏𝑏′𝑖2 
= 𝑎𝑎′ + 𝑎𝑏′𝑖 + 𝑏𝑎′𝑖 − 𝑏𝑏′  since 𝑖2 = −1
= 𝑎𝑎′ − 𝑏𝑏′ + 𝑖(𝑎𝑏′ + 𝑏𝑎′) 

Let 𝑧 = 𝑎 + 𝑏𝑖 and 𝑧′ = 𝑎′ + 𝑏′𝑖 be two complex numbers



❸ 𝑧 × 𝑧′ = 𝑎 + 𝑏𝑖 × 𝑎′ + 𝑏′𝑖 = 𝑎𝑎′ − 𝑏𝑏′ + 𝑖(𝑎𝑏′ + 𝑏𝑎′)
Example:

𝑧 = 1 + 2𝑖 ;  𝑧′ = 3 + 3𝑖 
First method: apply the above rule

𝑧 × 𝑧′ = 1 + 2𝑖 3 + 3𝑖 = 1 × 3 − 2 × 3 + 𝑖 1 × 3 + 2 × 3 = −3 + 9𝑖 
 

Second method: multiply step by step

𝑧 × 𝑧′ = 1 + 2𝑖 3 + 3𝑖 = 3 + 3𝑖 + 6𝑖 + 6𝑖2 = 3 + 9𝑖 − 6 = −3 + 9𝑖 

Let 𝑧 = 𝑎 + 𝑏𝑖 and 𝑧′ = 𝑎′ + 𝑏′𝑖 be two complex numbers



❹ If 𝑧 = 0, then 𝑎 = 𝑏 = 0  

Given 𝑧 = 𝑚 − 𝑛 + 𝑛 + 2 𝑖
Find the values of m and n so that z is null.

𝑚 − 𝑛 = 0 and 𝑛 + 2 = 0 

𝑚 = 𝑛                𝑛 = −2 

𝑚 = −2 

Let 𝑧 = 𝑎 + 𝑏𝑖 and 𝑧′ = 𝑎′ + 𝑏′𝑖 be two complex numbers



❺ If 𝑧 = 𝑧′, then 𝑎 = 𝑎′ and 𝑏 = 𝑏′  
Given 𝑧 = 𝑚 − 𝑛 + 𝑛 + 2 𝑖 and 𝑧′ = 3 + 3𝑖
Find the values of m and n so that z= 𝑧’.
𝑚 − 𝑛 = 3 and     𝑛 + 2 = 3 

𝑚 = 𝑛 + 3           𝑛 = 3 − 2 = 1 

𝑚 = 1 + 3 = 4 

Let 𝑧 = 𝑎 + 𝑏𝑖 and 𝑧′ = 𝑎′ + 𝑏′𝑖 be two complex numbers



❻ A complex number z is said to be pure imaginary if and only if 𝑅𝑒 𝑧 = 0 

and 𝐼𝑚(𝑧) ≠ 0.
Example:

−
1

2
𝑖 ;  12𝑖 ;  𝑖 ;  −𝑖 ;  … are pure imaginary

Let 𝑧 = 𝑎 + 𝑏𝑖 and 𝑧′ = 𝑎′ + 𝑏′𝑖 be two complex numbers

Remark:

A pure imaginary is a complex number whose square is negative, so 0 is  not 

considered as a pure imaginary.



𝑧 = 𝑎 + 𝑏𝑖 is a complex number.

The conjugate of z is ҧ𝑧 = 𝑎 − 𝑖𝑏

Example:

𝑧 = 1 + 3𝑖 ҧ𝑧 = 1 − 3𝑖 
𝑧 = −1 + 3𝑖 ҧ𝑧 = −1 − 3𝑖 
𝑧 = 1 − 3𝑖 ҧ𝑧 = 1 + 3𝑖 
𝑧 = −1 − 3𝑖 ҧ𝑧 = −1 + 3𝑖 



❶ Ӗ𝑧 = 𝑧 

ҧ𝑧 = 𝑎 − 𝑏𝑖 
Ӗ𝑧 = 𝑎 − 𝑏𝑖 = 𝑎 + 𝑏𝑖 = 𝑧 



❷ 𝑧 + 𝑧′ = ҧ𝑧 + ഥ𝑧′ 

𝑧 + 𝑧′ = 𝑎 + 𝑎′ + 𝑏 + 𝑏′ 𝑖 
= 𝑎 + 𝑎′ − 𝑏 + 𝑏′ 𝑖 
= 𝑎 + 𝑎′ − 𝑏𝑖 − 𝑏′𝑖 

= 𝑎 − 𝑏𝑖 + 𝑎′ − 𝑏′𝑖 = ҧ𝑧 + ഥ𝑧′ 



❷ 𝑧 + 𝑧′ = ҧ𝑧 + ഥ𝑧′ 
Example:

𝑧 = 1 + 2𝑖 ;  𝑧′ = 3 + 3𝑖 

𝑧 + 𝑧′ = 4 + 5𝑖 = 4 − 5𝑖 

ҧ𝑧 + ഥ𝑧′ = 1 − 2𝑖 + 3 − 3𝑖 = 4 − 5𝑖 



❸ 𝑧𝑧′ = ҧ𝑧 ഥ𝑧′ 

𝑧𝑧′ = 𝑎𝑎′ − 𝑏𝑏′ + 𝑎𝑏′ + 𝑏𝑎′ 𝑖 
= 𝑎𝑎′ − 𝑏𝑏′ − 𝑎𝑏′ + 𝑏𝑎′ 𝑖 
= 𝑎𝑎′ − 𝑏𝑏′ − 𝑎𝑏′𝑖 − 𝑏𝑎′𝑖 

ҧ𝑧ഥ𝑧′ = 𝑎 − 𝑏𝑖 𝑎′ − 𝑏′𝑖  

= 𝑎𝑎′ − 𝑎𝑏′𝑖 − 𝑏𝑎′𝑖 + 𝑏𝑏′𝑖2 

= 𝑎𝑎′ − 𝑎𝑏′𝑖 + 𝑏𝑎′𝑖 − 𝑏𝑏′ 

= 𝑧𝑧′ 



❸ 𝑧𝑧′ = ҧ𝑧 ഥ𝑧′ 
Example:

𝑧 = 1 + 2𝑖 ;  𝑧′ = 3 + 3𝑖 
𝑧𝑧′ = 1 × 3 − 2 × 3 + 1 × 3 + 2 × 3 𝑖 = −3 + 9𝑖 

𝑧𝑧′ = −3 − 9𝑖 

ҧ𝑧ഥ𝑧′ = 1 − 2𝑖 3 − 3𝑖 = 1 × 3 − −2 −3 + 1 × −3 + −2 3 𝑖 

= −3 − 9𝑖 



❹𝑧 ҧ𝑧 = 𝑎2 + 𝑏2

𝑧 ҧ𝑧 = 𝑎 + 𝑏𝑖 𝑎 − 𝑏𝑖 = 𝑎2 − 𝑏𝑖 2 = 𝑎2 − 𝑏2𝑖2 = 𝑎2 + 𝑏2 

Example:

𝑧 = 1 + 2𝑖 
𝑧 ҧ𝑧 = 1 + 2𝑖 1 − 2𝑖 = 12 + 22 = 5 

𝑧 = 3 + 3𝑖 
𝑧 ҧ𝑧 = 3 + 3𝑖 3 − 3𝑖 = 32 + 32 = 18 



Answer with true or false and justify.

1. 𝑖3 = 𝑖 

False since:

𝑖3 = 𝑖 × 𝑖2 = 𝑖 −1 = −𝑖  



Answer with true or false and justify.

2. z = (2𝑖 − 1)(2𝑖 + 1) is a real number.

True since:

2𝑖 − 1 2𝑖 + 1 = 2𝑖 2 − 12 = 4𝑖2 − 1 = −4 − 1 = −5 which is real 



Answer with true or false and justify.

3. 𝑧 = 1 + 2𝑖 2 + 1 − 2𝑖 2 is a pure imaginary

False since:

𝑧 = 1 + 2𝑖 2 + 1 − 2𝑖 2 = 1 + 4𝑖 + 4𝑖2 + 1 − 4𝑖 + 4𝑖2 

= 2 − 4 − 4 = −6 which is real



Answer with true or false and justify.

4. The imaginary part of 𝑧 =
2−𝑖

3
+ 𝑖 is 

2

3

True since:

𝑧 =
2

3
−

𝑖

3
+ 𝑖 =

2

3
+ 𝑖 −

1

3
+ 1 =

2

3
+

2

3
𝑖 so 𝐼𝑚(𝑧) =

2

3
 



Answer with true or false and justify.

5. If 𝑧 =
2

3
𝑖 𝑖 + 2 2, then 𝑅𝑒 𝑧 = 2 

False since:

𝑧 =
2

3
𝑖 𝑖2 + 4𝑖 + 4 =

2

3
𝑖 −1 + 4𝑖 + 4 =

2

3
𝑖 3 + 4𝑖 = 2𝑖 +

8

3
𝑖2 = 2𝑖 −

8

3
 

So 𝑅𝑒 𝑧 = −
8

3



Answer with true or false and justify.

6. If 𝑅𝑒 2𝑥 − 𝑖 + 3 = 4 , then 𝑥 = 0

False since:

𝑧 = 2𝑥 − 𝑖 + 3 = 2𝑥 + 3 − 𝑖 

𝑅𝑒 𝑧 = 2𝑥 + 3 

So 2𝑥 + 3 = 4 ;  𝑥 =
4− 3

2
≠ 0  



Answer with true or false and justify.

7. The conjugate of 𝑧 = 3 + 2𝑖 2 is 9 − 4𝑖

False since:

𝑧 = 3 + 2𝑖 2 = 9 + 12𝑖 + 4𝑖2 = 9 + 12𝑖 − 4 = 5 + 12𝑖 
ҧ𝑧 = 5 − 12𝑖 
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