Complex Numbers

Part 1

Introduction

$$\chi^2 = -1$$
 No solution in IR

Suppose that there is a number *i* such that:

$$i^2 = -1$$

i is called imaginary number

Definition

- ✓ A complex number z is in the form of z = a + bi a, $b \in IR$
- ✓ \boldsymbol{a} is called the real part: Re(z) = a and \boldsymbol{b} is called the imaginary part: Im(z) = b
- \checkmark The set of all the complex numbers is denoted \mathbb{C} .
- ✓ Any real number is a complex number where 0 is its imaginary part.

Example:

$$z = -1 - 3i$$
 where $Re(z) = -1$ and $Im(z) = -3$
 $z = 2 + \frac{1}{2}i$ where $Re(z) = 2$ and $Im(z) = \frac{1}{2}$

Let z = a + bi and z' = a' + b'i be two complex numbers

1 z + z' = a + bi + a' + b'i = (a + a') + (b + b')iExample:

$$z = 1 + 2i$$
 ; $z' = 3 + 3i$
 $z + z' = (1 + 4) + (3 + 3)i = 4 + 5i$

2 z - z' = a + bi - (a' + b'i) = (a - a') + (b - b')iExample:

$$z = 1 + 2i$$
 ; $z' = 3 + 3i$
 $z - z' = (1 - 3) + (2 - 3)i = -2 + (-1)i = -2 - i$

Let z = a + bi and z' = a' + b'i be two complex numbers

3 $z \times z' = (a + bi) \times (a' + b'i) = aa' - bb' + i(ab' + ba')$ Proof:

```
z \times z' = (a + bi) \times (a' + b'i)
= aa' + ab'i + bia' + bib'i
= aa' + ab'i + ba'i + bb'i^2
= aa' + ab'i + ba'i - bb' since i^2 = -1
= aa' - bb' + i(ab' + ba')
```


Let z = a + bi and z' = a' + b'i be two complex numbers

$$3 z \times z' = (a + bi) \times (a' + b'i) = aa' - bb' + i(ab' + ba')$$

Example:

$$z = 1 + 2i$$
 ; $z' = 3 + 3i$

First method: apply the above rule

$$z \times z' = (1+2i)(3+3i) = 1 \times 3 - 2 \times 3 + i(1 \times 3 + 2 \times 3) = -3 + 9i$$

Second method: multiply step by step

$$z \times z' = (1+2i)(3+3i) = 3+3i+6i+6i^2 = 3+9i-6 = -3+9i$$

Let z = a + bi and z' = a' + b'i be two complex numbers

4 If
$$z = 0$$
, then $a = b = 0$

Given
$$z = m - n + (n+2)i$$

Find the values of m and n so that z is null.

$$m - n = 0$$
 and $n + 2 = 0$

$$m=n$$
 $n=-2$

$$m = -2$$

Let z = a + bi and z' = a' + b'i be two complex numbers

Given
$$z = z'$$
, then $a = a'$ and $b = b'$
Given $z = m - n + (n + 2)i$ and $z' = 3 + 3i$
Find the values of m and n so that $z = z'$.
 $m - n = 3$ and $n + 2 = 3$
 $m = n + 3$ $n = 3 - 2 = 1$
 $m = 1 + 3 = 4$

Let z = a + bi and z' = a' + b'i be two complex numbers

6 A complex number z is said to be pure imaginary if and only if Re(z) = 0 and $Im(z) \neq 0$.

Example:

$$-\frac{1}{2}i$$
; 12*i*; *i*; —*i*; ... are pure imaginary

Remark:

A pure imaginary is a complex number whose square is negative, so 0 is not considered as a pure imaginary.

Conjugate of a complex number

z = a + bi is a complex number. The conjugate of z is $\bar{z} = a - ib$

Example:

$$z = 1 + 3i$$
 $\bar{z} = 1 - 3i$
 $z = -1 + 3i$ $\bar{z} = -1 - 3i$
 $z = 1 - 3i$ $\bar{z} = 1 + 3i$
 $z = -1 - 3i$ $\bar{z} = -1 + 3i$

1
$$\bar{z} = z$$

 $\bar{z} = a - bi$
 $\bar{z} = a - bi = a + bi = z$

$$2 \overline{z+z'} = \overline{z} + \overline{z'}$$

Example:

$$z = 1 + 2i$$
; $z' = 3 + 3i$
 $\overline{z + z'} = \overline{4 + 5i} = 4 - 5i$
 $\overline{z} + \overline{z'} = 1 - 2i + 3 - 3i = 4 - 5i$

$$\overline{zz'} = \overline{z} \, \overline{z'}$$

$$\overline{zz'} = \overline{aa'} - bb' + (ab' + ba')i$$

$$= aa' - bb' - (ab' + ba')i$$

$$= aa' - bb' - ab'i - ba'i$$

$$\overline{zz'} = (a - bi)(a' - b'i)$$

$$= aa' - ab'i - ba'i + bb'i^2$$

$$= aa' - ab'i + ba'i - bb'$$

$$= \overline{zz'}$$

 $\mathbf{3} \; \overline{zz'} = \bar{z} \; \overline{z'}$

Example:

```
z = 1 + 2i ; z' = 3 + 3i

zz' = 1 \times 3 - 2 \times 3 + (1 \times 3 + 2 \times 3)i = -3 + 9i

\overline{zz'} = -3 - 9i

\overline{z}\overline{z'} = (1 - 2i)(3 - 3i) = 1 \times 3 - (-2)(-3) + (1 \times (-3) + (-2)(3))i

z = -3 - 9i
```


$$4z\bar{z} = a^2 + b^2$$

$$z\bar{z} = (a+bi)(a-bi) = a^2 - (bi)^2 = a^2 - b^2i^2 = a^2 + b^2$$
Example:
$$z = 1 + 2i$$

$$z\bar{z} = (1+2i)(1-2i) = 1^2 + 2^2 = 5$$

$$z = 3+3i$$

$$z\bar{z} = (3+3i)(3-3i) = 3^2 + 3^2 = 18$$

Answer with true or false and justify.

$$1. i^3 = i$$

$$i^3 = i \times i^2 = i(-1) = -i$$

Answer with true or false and justify.

2.
$$z = (2i - 1)(2i + 1)$$
 is a real number.

True since:

$$(2i-1)(2i+1) = (2i)^2 - 1^2 = 4i^2 - 1 = -4 - 1 = -5$$
 which is real

Answer with true or false and justify.

3.
$$z = (1 + 2i)^2 + (1 - 2i)^2$$
 is a pure imaginary

$$z = (1+2i)^2 + (1-2i)^2 = 1+4i+4i^2+1-4i+4i^2$$

= 2-4-4 = -6 which is real

Answer with true or false and justify.

4. The imaginary part of $z = \frac{2-i}{3} + i$ is $\frac{2}{3}$

True since:

$$z = \frac{2}{3} - \frac{i}{3} + i = \frac{2}{3} + i\left(-\frac{1}{3} + 1\right) = \frac{2}{3} + \frac{2}{3}i$$
 so $Im(z) = \frac{2}{3}$

Answer with true or false and justify.

5. If
$$z = \frac{2}{3}i(i+2)^2$$
, then $Re(z) = 2$

$$z = \frac{2}{3}i(i^2 + 4i + 4) = \frac{2}{3}i(-1 + 4i + 4) = \frac{2}{3}i(3 + 4i) = 2i + \frac{8}{3}i^2 = 2i - \frac{8}{3}$$

So $Re(z) = -\frac{8}{3}$

Answer with true or false and justify.

6. If
$$Re(2x - i + \sqrt{3}) = 4$$
, then $x = 0$

$$z = 2x - i + \sqrt{3} = 2x + \sqrt{3} - i$$

 $Re(z) = 2x + \sqrt{3}$
So $2x + \sqrt{3} = 4$; $x = \frac{4 - \sqrt{3}}{2} \neq 0$

Answer with true or false and justify.

7. The conjugate of $z = (3 + 2i)^2$ is 9 - 4i

$$z = (3 + 2i)^2 = 9 + 12i + 4i^2 = 9 + 12i - 4 = 5 + 12i$$

 $\bar{z} = 5 - 12i$

